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Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays
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We measure the enhanced transmission of Terahertz radiation through a metal film perforated with arrays of
subwavelength holes of varying hole size. By measuring transmission spectra in the time domain and compar-
ing our experimental results to a rigorous modal-matching model, we are able to assess the relative contribu-
tions of resonant and nonresonant transmission channels. We see that the contribution of the resonant trans-
mission becomes more important with decreasing hole size because the lifetime of the surface mode mediating
the transmission is increased with reducing hole size. Using low-temperature measurements to control the
nonradiative loss levels in our system, we show that losses limit the lifetime of the surface mode, thereby
limiting the resonant transmission intensity for the smallest holes.
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I. INTRODUCTION

Recent interest in the enhanced optical transmission
through arrays of subwavelength holes in metal films was
sparked by the seminal work!' of Ebbesen et al., who ob-
served that for appropriate array lattice periodicities and
wavelengths the transmission through an array of subwave-
length holes can vastly exceed that expected from the open
surface area of the holes. Transmission peaks are typically
found at wavelengths close to the lattice periodicity. Since
this visible-frequency observation of enhanced optical trans-
mission through hole arrays, the same effect has been seen at
infrared,? Terahertz,? and microwave frequencies* with appli-
cations suggested in designing filters,> optical sensors,® mi-
crowave devices,* and THz optical components.’

Since the first experimental observations of this effect,
multiple explanatory theoretical models have been
developed.®~10 It is generally accepted that the surface modes
(surface plasmons at optical frequencies) play a crucial role.
In this respect, a model offering considerable physical in-
sight into the transmission mechanism has been the “Fano-
type” mechanism;'! in this picture, transmission is inter-
preted in terms of the interference between two transmission
channels: one nonresonant (direct) channel describes trans-
mission through individual, uncoupled holes while the reso-
nant channel describes light, which traverses the grating
through adjacent holes via diffractive coupling to surface
modes (see Fig. 1). Within this model, one can understand
the origin of peaks in the transmission spectra of the hole
arrays in terms of constructive interference conditions,
reached when the wavelength of the light is approximately
equal to the spacing of the hole-array lattice. Similarly, de-
structive interference conditions can cause transmission
minima. Separating!? these transmission channels experi-
mentally can help in determining the qualitative effects of
factors such as the material properties,” losses,'? structural
parameters,' and experimental constraints. '3

Temporally resolved measurements can help separate the
two interference pathways.!® Fully time-resolved measure-
ments of the electric field profile of transmitted THz pulses
to show that the resonant and nonresonant transmission of
the hole arrays can be considered as two distinct, separable
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phenomena. The system we consider is of a hole array in a
thin film of conductor, bounded by a dielectric substrate and
vacuum superstrate. By measuring and modeling the time-
domain transmission of a THz pulse through this hole array,
we can recognize how the hole size effects the lifetime of the
surface mode mediating the resonant transmission and inde-
pendently monitor changes in the level of nonresonant trans-
mission with hole size. Similarly to previous work on a tri-
angular lattices of round holes by Miyamaru et al.,'” we
observe that the relative contribution of the resonant trans-
mission becomes larger as the hole size is decreased—due to
the corresponding increase in the surface mode lifetime. Us-
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FIG. 1. (Color online) Transmission of a pulse through a hole
array. The holes are perforated in a gold film, supported on a sub-
strate of silicon. Time-domain transmission spectra (of the type
shown either side of the sample) are measured using a collimated, 1
cm diameter beam of THz radiation. (1) The incident vacuum re-
gion, (2) hole-array layer, and (3) dielectric substrate are indicated.
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ing low-temperature measurements, we show how material
losses in the system change the surface mode propagation
length, and demonstrate how this lowers the transmission
and broadens transmission resonances.

II. MODAL-MATCHING MODEL

The transmission through subwavelength hole arrays and
related structures in metals at low frequencies (such as the
THz range and below) has been successfully modeled using
modal-matching techniques,'>'® which are well suited to the
problem since the boundary conditions are easily defined.

The physical system we consider is a thin film of conduc-
tor perforated with a two-dimensional square lattice (pitch d)
of small square-sided holes (side a)—indicated in Fig. 1. The
conductor is supported on a dielectric substrate (permittivity
g,), with the superstrate being vacuum with refractive index
of unity. In our modal-matching model the electromagnetic
fields in the superstrate and substrate are matched to the
fields in the waveguide modes of the subwavelength holes;
by exploiting the continuity of electric and magnetic field at
the boundaries of the interfaces we can obtain explicit ana-
Iytical expressions for transmission and reflection of our thin
hole array. Below, we develop the formalism for this model,
which is established along the same principles as the earlier
work of Mary et al.'?

We begin by defining expressions for the electric and
magnetic fields in the three regions of a hole array, indicated
as numbers on Fig. 1: (1) in the incident vacuum region, (2)
inside the holes, and (3) in the substrate. For simplicity, note
that in all the following equations, we omit the time
t-dependent component to the fields, €' where w is the
radial frequency. We express the electric field in the vacuum
region (E}() as a sum of normally incident, unit plane waves
polarized in the x-direction and a two-dimensional Fourier-
Floquet expansion of diffracted orders. Inside the holes, ap-
proximating the metal as being perfectly conducting (a rea-
sonable  approximation at THz and microwave
frequencies), the electric field (E2) is expressed by the fun-
damental mode in a square cavity of width a, while in the
substrate we have another Fourier-Floquet expansion of dif-
fracted orders (E?C) These definitions amount to:

El=exp(ikoz) + X, r"mWmm exp(— k"),

my,my
(1a)
Ef =B sin<ﬂ>exp(iqzz) -C sin(ﬂ>exp(iqzz), (1b)
a a
El = > g exp(ik}""z), (1c)
ny,ny

where ‘I’ml’mlzexp(imT'ﬂx)exp(ia%Ty). The integer pairs
my, m, and n;, n, denote the diffracted orders from the grat-
ing of pitch d on the incident (m) and the substrate (n) sides
of the hole array. The factors 12 and ¢"1""2 describe the
complex electric field reflection and transmission coefficients
respectively. The factor B describes the electric field ampli-
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tude of the decaying wave in the cavity, and the factor C
describes the field amplitude of the wave reflected from bot-
tom of the cavity.

The wave vector associated with a particular diffracted
order is denoted by k. The z component of the wave vector in
the incident and substrate regions can be written as

2my\? 2myr \?
my,m 2 1 2
kzl 2=\/k0—< 4 )—( P ) (2a)
2 2 (2 2
K = \/sxkg—(ﬂ) —< "277) . (2b)
d d

where ¢ is the speed of light, and ky=w/c. Note that we
consider only the case where the superstrate is vacuum, i.e.,
with a refractive index of unity. The propagation constant in
the cavity is

q.= Vkﬁ— (mla)?. (3)

In agreement with previous observations,'> we find only
minor perturbation to the results for thin samples when we
include higher order waveguide modes.

We can obtain the z components of the electric field in the
three regions of space, and subsequently expressions for the
magnetic field H, through the free-space Maxwell relations
V.E=0and VX E=-u,dH/dt. These give the x and y com-
ponents of the electric and magnetic fields in all regions in
terms of the set of unknowns r, ¢, B, and C. We can eliminate
some of these unknowns through imposition of boundary
conditions stating that both the x and y components of the
electric field must be continuous at the vacuum-substrate in-
terfaces over the entire unit cell, i.e., continuity z=0 and z
=h where h is the depth of the holes in the array. In contrast,
the magnetic field components are continuous only at the
hole aperture.

Matching the electric field in regions 1 and 2 at z=0, and
in regions 2 and 3 at z=h (i.e., multiplying by W™ and inte-
grating over x and y from 0 to d), and taking into account the
orthogonality of the eigenmodes of the system, yields

8" 4 PR = (B - C) S (4a)
Pmeihl g = (Beid:h Ceia:y gmem (4b)
a fa y —-2mym
o [ o{hol 2
0Jo a d
2mym
Xexp| —1i y |dxdy, (4c)

where 8" represents the Kronecker delta function,
S8(my). 8(my,).

By considering continuity of the H field over the holes at
z=0 and z=h respectively we can obtain the pair of Egs. (5a)
and (5b)—We are essentially multiplying H fields by sin(*")
and integrating from O to a for x and y:
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=(B+ C)qz; (52)
2
2 1 k:l]’n2+ 1 21117T eikngzhsgl,nz
s z kg],nz d
- o a’
= (Be'%" + Ce 4 )qZE (5b)
e m afr [y 2mm 2my
Sy = sin| — |exp| i x |exp| i v |dxdy.
0 Jo a d d

(5¢)

It is then straightforward to solve Egs. (4a), (4b), (5a), and
(5b) eliminating the coefficients B and C to obtain the com-
plex reflection and transmission coefficients, r(m,,m,) and
t(ny,n,):

2 my,m
44> kS

P ) = o g (6a)
4a* kST
)= o
_ E Sy gy kml,mz ; 2’11_177 ’
0= 1 2 z + Emem2 d
my,nmy Z
1 (207>
npny iy | gy , - | =018
+22S1 S5 [kz +k"1’"z< 4 )] (6¢)
ny,n b4

Solving the three equations in (5c) constitutes a complete
simulation of the complex reflection and transmission coef-
ficients of the hole array. Typically, we find that convergence
was obtained by summing over the first three diffracted or-
ders.

We are interested in the frequency dependent zero order
reflected and transmitted power, R and T, given by:

R*(w) = [P (7a)
T0%(w) = [(*0\e, 2 (7b)

This concludes the formalism of our model. Note that, in
order to compare our model with experimental data, we nor-
malize T%%(w) by the transmittance of an air-silicon inter-
face, which take as being 0.70 throughout the THz frequency
range.

In Fig. 2(a), we show calculated transmission spectra for a
system consisting of a hole array with lattice pitch of
100 um perforated in a perfect conductor on a loss-less sub-
strate of silicon, described by e,=11.85. The hole size varies
from 25 to 85 wm as indicated in the figure legend. In these
frequency domain spectra we can see two peaks within the
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FIG. 2. (Color online) Calculated transmission spectra through a
100 um pitch hole array in a thin conducting film shown (a) in the
frequency domain and (b) in the time domain. In the time domain,
regions of nonresonant transmission (A) and surface-mode-
mediated transmission (B) are indicated. The time-domain traces
are scaled to facilitate comparison between the pulse amplitudes,
scaling factors f are indicated; the plotted field is E,, /f for each
trace. (c) Extension of the same time-domain traces shown in (b) to
200 picoseconds. The increase in the lifetime of the resonant modes
with decreasing hole size can be clearly seen.

range plotted, one at 0.86 THz and another at 1.22 THz. Both
resonances have the characteristic asymmetric “Fano-type”
shape.?!

In the “Fano-type” picture for hole array transmission'!
we consider that there are two paths for light incident on the
array to be transmitted by the structure. First there is the
nonresonant transmission, in which light couples in to and
out of the zero-order waveguide mode inside the holes. The
second method is surface-mode mediated resonant transmis-
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sion; for this path light incident on the hole array is coupled,
via the array periodicity, to surface mode propagating on the
interface between the conductor and the dielectric. The com-
bination of constructive and destructive interference between
these two mechanisms gives the aforementioned characteris-
tic resonance shape. A schematic of these two pathways is
shown as part of Fig. 1

The approximate resonant frequency of each transmission
maximum (»,) can be found from the equation:'!

R

w, c\it+j?

2m d\““ysd

; (8)

v,=

in which the resonance position is determined by the lattice
periodicity d, and the permittivity of the dielectric above the
conductor, &, The mode indices i and j are integers indicat-
ing the direction of the surface mode propagation across the
hole-array lattice. This equation is an approximation made
for the case of a lattice of infinitesimally small holes perfo-
rated in a thin sheet of perfect conductor; the introduction of
finite hole size causes slight shifts in the resonance
position.'””> From Eq. (8) we can surmise that the two reso-
nance peaks seen in the transmission spectrum of Fig. 2(a)
are due to a surface mode on the silicon-gold interface; with
the modes corresponding to the (1,0) and (1,1) directions
across the hole lattice, as indicated on Fig. 2(a). Equivalent
resonances arising from the surface mode on the gold-air
interface will lie beyond 3 THz.

In Fig. 2(a), it is interesting to note that the maximum
value of transmittance for the (1,0) resonance is the same for
all hole sizes, and equal to the transmittance of the plain
silicon interface (i.e., on resonance the normalized transmis-
sion in Fig. 2(a) is 1.0). On decreasing the hole size, the
resonance width decreases, tending to an infinitely narrow
resonance for infinitely small holes. Note that this behavior
is not observed for the (1,1) and higher order resonances,
since at frequencies above 0.86 THz some power is radiated
through higher diffracted orders (other than the zero-order
mode).

This behavior can be understood more clearly if we turn
to the time-domain response of the system. We can evaluate
the temporal dependence of the transmitted fields E(r)
through the inverse Fourier transform

E(1)= J O )E (e, ©)
0

where E;,(w) describes the incident field. For this incident
field we apply the experimentally measured spectrum of a
broadband pulse from a THz spectrometer [shown as the
incident pulse in Fig. 1. The resulting time-domain electric
field profiles are shown as Fig. 2(b)]. In this figure we can
see two distinct regions to the time-domain transmission
plot. The initial nonresonant transmission pulse (indicated as
pulse “A”) corresponds to the radiation that has been trans-
mitted straight through the holes without coupling to a sur-
face mode. The second region (pulse-train “B”) corresponds
to radiation that has coupled to the surface mode before be-
ing transmitted. In the time-domain traces the field ampli-
tudes are scaled such that the peak field of the nonresonant
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pulse is the same for all hole sizes; this allows us to compare
the relative change in field amplitude between the resonant
and nonresonant sections of the time-domain traces. Scaling
factors are indicated in the figure legend.

We can now consider in more detail the resonant trans-
mission pulses in region (B) of Fig. 2(b). In the time-domain
traces the amplitude of the resonance oscillations decreases
over time; for the smallest holes this decay-time is longer.
The lifetime of these resonance pulses in region “B” deter-
mines the width of the transmission resonances in Fig.
2(a)—Ilonger lifetime corresponds to a narrower resonance in
the frequency domain. The pulses of region “B” are shown
extended to 200 picoseconds in Fig. 2(c), in which the decay
rate of all the pulse trains can be clearly seen. Note that there
is very little decay in the amplitude of the resonance oscilla-
tions for the 25 wm holes even after an interval of 50ps.

The decay time in this idealized model is determined
purely by phase retardation across the width of the holes;
larger holes have a wider resonance as the phase-shift across
the hole width is larger.

Here, we should also note that as well as a change in the
resonant oscillation decay time there is also a change in the
shape of the waveform in region “B” as the hole size is
reduced. This is due to the relative intensities of the (1,0)
and (1,1) modes (both of which are present in the pulse
train) changing as a function of hole size, as can be seen in
the frequency-domain spectra of Fig. 2(a); such effects have
been observed previously as an effect of the hole shape.?

From this time-domain analysis of the transmission spec-
tra we have seen evidence for the underlying mechanisms
and the factors determining the resonance width. We shall
now move on to consider equivalent time-domain spectra
from experimental measurements.

III. EXPERIMENTAL MEASUREMENTS

Previous measurements in the THz frequency range'>??

have been made on hole arrays formed from thin perforated
metal films on dielectric substrates. In the THz frequency
range it is possible to exploit techniques of THz generation
and detection coupled to ultrafast laser sources in order to
extract extra information about the hole array transmission;
for example by using an optical pulse as a near-field probe of
THz radiation,>* or by using an amplified laser pulse to dy-
namically modify the properties of the structure.?

Our samples consist of a 150 nm thick layer of perforated
gold film on top of a 550 wm thick silicon-wafer substrate;
the hole arrays are fabricated by contact lithography, fol-
lowed by the evaporation of the gold film and a lift-off pro-
cess to form the array of holes. We use large-area samples
(2.5 cm sided squares) to minimize the effects of finite
sample size and ensure that our results are comparable to the
infinite array of our analytical model.

We measure the zero-order transmission of the hole arrays
using a time domain THz spectrometer.® The incident THz
pulses are essentially single cycle electromagnetic pulses
(see the incident pulse of Fig. 1) of about 1 ps duration and
peak field strength approximately 1 kV/cm when focused for
detection. The time-dependent electric field profile is de-
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FIG. 3. (Color online) Transmission spectra through hole arrays
with hole sizes varying from 25 to 85 wm (a) Experimental
frequency-domain transmission spectra (b) Experimental time-
domain spectra. Scaling factors (f) are indicated, such that the plot-
ted field is Eyqs/f-

tected directly in the far field. The spectrometer is flushed
with dry air to prevent absorption by water vapor. By taking
the discrete Fourier transform of the time-domain waveforms
we obtain the frequency domain spectrum E(w). From this
we  obtain  intensity  transmission  spectra, T(w)
=|E(w)[*/|E{(w)|? i.e., the field transmitted through the hole
array E,(w) is normalized by the field transmitted through the
substrate alone, E (w). The spectral resolution of the result-
ing frequency domain trace is determined by the time-
window over which we measure the corresponding electric
field profile; our maximum time-domain scan length is lim-
ited by reflections within the silicon wafer. Note that we
measure with a large area (1 cm diameter), collimated beam
in order to avoid limitations found in previous measurements
due to finite beam size!®> and angular resolution.”> We esti-
mate that our 1 cm diameter THz beam will allow a coherent
measurement window of around 30 ps, significantly larger
than that imposed by the multiple reflections within the sili-
con substrate (around 10 ps).

In Fig. 3(a), we show experimentally measured
frequency-domain transmission spectra through the hole ar-
rays, normalized by the transmission through the silicon sub-
strate. The spectral resolution of all these traces is 100 GHz,
determined by the 10 ps scan duration of the time-domain
measurements—this scan duration being limited by the
round trip time of pulses reflected from the interfaces of the
silicon substrate. As in the model of Fig. 2(a) there are two
distinct resonance peaks for all hole sizes, at approximately
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0.86 and 1.22 THz. The smaller oscillations throughout the
frequency domain spectra are caused by taking the Fourier
transform of the random instrumental noise present from our
time-domain traces over the finite time-window.

There are clear differences between these measured traces
and the modeled data shown in Fig. 2(a). In the frequency
domain, we see that as the hole size is reduced, the peak
transmission amplitude decreases, in contrast to the simu-
lated data of Fig. 2(a) in which the peak amplitude is 1.0 for
all hole sizes. Furthermore the transmission width in the ex-
perimental spectra does not narrow continuously with hole
size, and the smaller hole size resonance peaks are consider-
ably broader than those in Fig. 2(a).

We can once again obtain a clearer picture of the trans-
mission behavior by looking at the time-domain spectra,
which show the origins of this discrepancy. In Fig. 3(b) we
show the original time-domain traces used to calculate the
measured transmission spectra. The train of pulses corre-
sponding to the resonant transmission decays in amplitude
more rapidly than in the model of Fig. 2(b). This effect is
particularly evident in the smallest holes—for the 25 um
holes we see an appreciable decay in the measured time-
domain spectra whereas there is very little temporal decay in
amplitude for the pulse train in the model of Fig. 2(b).
Clearly, the lifetime of the measured surface mode is lower
than in Fig. 2(b), and this is limiting the transmission mag-
nitude.

The disparity in surface mode lifetimes between Figs.
2(b) and 3(b) is caused by losses in the silicon substrate of
our system, which has a nonzero imaginary component to its
dielectric function. At THz frequencies, we are highly sensi-
tive to absorption caused by free carriers introduced to the
silicon crystal by the presence of impurities. Such free car-
riers can contribute to absorption even at relatively low
concentrations.”’” We can measure the free-carrier concentra-
tion and indeed the full complex dielectric function of our
silicon wafers using transmission measurements, following
the methodology of Jeon et al.?’” We find a frequency variant
complex dielectric function to our silicon as shown in Fig. 5,
ranging between 0.5 and 1.5 in the frequency range of inter-
est. Adding this lossy dielectric function to our analytical
model yields the plots of Fig. 4(a). In these plots the addition
of loss quenches the propagation of the resonant surface
mode; the resonances are both lower in amplitude and
broader in width. In the time domain [Fig. 4(b)], the resonant
transmission pulses decay more rapidly after the initial pulse,
corresponding to a reduced propagation length for the sur-
face mode. The addition of loss to the modal-matching
model produces results, which closely match the experimen-
tal spectra in both the time domain and frequency domain.
The remaining discrepancy between the modeled and experi-
mentally measured transmission is in the absolute transmis-
sion magnitude across the spectrum, which is slightly lower
in the measured spectra of Fig. 3(a) than in the modeled
spectra of Fig. 4(a) This is due to the propagation of the
pulse through the 500 wm thick lossy silicon substrate; this
propagation distance is not accounted for in the calculated
transmission spectra.

From these results we can infer that losses play a crucial
role in determining the transmission, especially in the small-
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FIG. 4. (Color online) (a) Spectra through the hole arrays, cal-
culated using the modal matching model, with the incorporation of
loss in the silicon layer (b). Calculated time-domain spectra, taken
from the IFFT of the calculated spectra. Scaling factors (f) are
indicated, such that the plotted field is E,,/f.

est holes for which hole-array surface-mode lifetime is the
longest.

IV. TEMPERATURE DEPENDENCE OF TRANSMISSION

We have identified a transmission mechanism for our
sample in the time-domain spectra, and shown the effects of
surface-mode lifetime in determining the transmission char-
acteristics. In this section, we demonstrate control over the
surface mode lifetime through variation of the temperature of
the silicon substrate; by cooling the substrate we are able to
trap the impurity carriers and lower the lossy component of
the silicon dielectric function.”® Such thermal control over
the semiconductor dielectric function can give extra insight?
in to the transmission mechanism through the hole arrays.

Thermal control is accomplished by cooling the hole-
array sample in a continuous-flow liquid-Helium cryostat;
the sample is mounted in close thermal contact with a copper
cold finger inside, which liquid helium is constantly circu-
lated. The cryostat is fitted with a calibrated thermocouple
temperature probe and a heating element; combining this
with a digital thermostat controller we can maintain the tem-
perature of the cold finger within 0.001 at 4.2 K, and to
within 0.1 at 292 K. The sample is contained within a
vacuum chamber with quartz windows allowing us to take
THz transmission spectra in the same manner as for previous
samples. Such cooling will reduce the number of free charge
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FIG. 5. (Color online) The frequency dependent permittivity of
our Silicon substrate, shown on a log scale. The imaginary compo-
nent is shown at both 292 and 4.2 K.

carriers®! by more than an order of magnitude, lowering the
loss levels in the substrate to near-negligible levels. In Fig. 5
we show the imaginary component to the permittivity of the
silicon measured at 4.2 K, which has decreased by a factor of
around four from the room temperature values; the small
residual imaginary component is due to scattering by defects
in the silicon crystal structure. By cooling to this level, we
will begin to approach the model of Fig. 2 in which the
silicon substrate has no imaginary component to its permit-
tivity.

In Fig. 6(a) we plot measured time-domain traces through
holes of size 55 wm at both room temperature (292 Kelvin)
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FIG. 6. (Color online) (a) Time-domain spectra through the
55 um holes at 292 and at 4.2 K Electric field amplitudes are
scaled to the same peak level. (b) Fitting a Lorentzian form to the
resonant component of the data with the surface mode lifetimes
indicated. (c) Transmission intensity spectra of the 55 wm holes at
292 and 4.2 K; the 4.2 K spectrum is scaled to match the peak
transmission intensity of the 292 K spectrum in order to compare
resonance mode widths.
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and at 4.2 Kelvin. From the time domain traces we can see a
distinct difference in the lifetime of the resonance oscilla-
tions between the trace at low temperature (blue) and at high
temperature (red). In this plot, the two traces are scaled to the
same peak-electric field amplitude in order that we can di-
rectly compare the decay rates of the resonance oscillations.

If we compare the change in the peak-oscillation ampli-
tude between 8.80 ps and 14.45 ps for both the hot and cold
time-domain traces, we find that at 4.2 K the peak electric
field amplitude has decayed to 0.37 = 0.1 of it’s initial value.
Over the same time interval in the 292 K trace the field has
decayed to 0.33*0.1 of its initial value. This comparison
between pulse peak-field amplitudes indicates that when we
decrease the loss in the substrate by cooling the silicon, the
surface mode lifetime is increased.

For a more thorough characterization of the surface-mode
lifetime, we can use a numerical fit to the data, shown as Fig.
6(b). The goal of this fitting procedure is to directly compare
the lifetime of the surface modes mediating this transmission
when we change the temperature of the sample. In the nu-
merical fit we treat the decay of the resonant transmission
oscillations in Fig. 6(a) as Lorentzian (i.e., exponential in
form). We fit the resonant oscillations of the time-domain
traces to the equation

E(t)=A,  sin[o; ot — 151 0)]e"™, (10)

essentially an exponentially decaying sinusoidal function.
The quantity of interest is the decay time of the predominant
(1,0) resonance, ;. There will also be a contribution from
the 1,1 resonance—however it is clear from the frequency-
domain spectra of Fig. 2(a) that the (1,0) resonance domi-
nates in the transmission of the 55 wm holes. Further terms
in Eq. (10) are w;  the frequency of the (1,0) transmission
peak seen in the frequency-domain spectra [shown as Fig.
2(a)]. A;p is the starting amplitude of the oscillations, and
the starting time offsets is 7.

In the fitting procedure, we first scale the measured time-
domain traces at both temperatures so as to have the same
peak electric field transmission level in the background
pulse; this effectively removes the effect of the radiation
propagating through the 500 um thick silicon wafer. Disre-
garding the nonresonant transmission pulse we use a least-
squares fitting algorithm to fit Eq. (10) to the resonance os-
cillations for the 4.2 K measurements in the interval from 8.0
ps to 16.0 ps. We point out that it is only because we have
time-domain data that allows us to temporally separate the
surface mode resonance oscillations from the nonresonant
transmission pulse that we can use this technique to directly
yield a surface-mode lifetime. From the least-squares fit, we
determine the resonance lifetime 7, as well as the free pa-
rameters A and ;. The frequency o, is fixed at the
center frequency of the resonance peak seen in the frequency
domain spectra [Fig. 2(a)]. We then perform the same fit on
the room-temperature data, this time constraining A, and
ty.10 to be the same as for the data at 4.2 K; we are essen-
tially assuming that low and high temperature resonances
have the same initial amplitude and phase at the time of
excitation. For the room-temperature oscillations we fit only
the exponential decay time, 7. Using this method the
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change in 7, as a function of temperature will be an effec-
tive measure of the change in the surface mode lifetime.

In Fig. 6(b) we show just the resonance oscillations at 4.2
and 292 K alongside the decaying exponential envelope of
the (1,0) resonance oscillations, having functional form
A, ge”"™0. The parameters A and 710 are determined from
the fitting procedure above. Additionally in Fig. 6(b) we
show in gray the section of the time-domain trace corre-
sponding to the nonresonant transmission, which we disre-
garded in the Lorentzian fits.

From the exponential envelope in Fig. 6(b) we can see
that the lifetime of the surface mode resonance transmission
has increased from 4.9+ 0.2 to 5.9+ 0.2 ps upon cooling the
sample. The residual 5.9 ps decay time is mostly due to the
phase-retardation across the width of the holes.

In Fig. 6(c), we see how this change in surface mode
lifetime changes the width of the transmission resonances. In
this figure we plot the frequency domain transmission inten-
sity at room temperature and at 4.2 K; again normalizing by
the transmission through a plain silicon interface. In order to
compare the mode widths the peak transmission of the 4.2 K
trace is scaled to the same level as the room temperature
spectrum. We can calculate each resonance’s Q factor, Q
=1,/ Av, where v, is frequency of the resonance peak and Av
is the full-width at half the maximum intensity. This shows O
for the (1,0) increasing from 5.0+ 0.2 at room temperature
to 6.6 0.3 at 4.2 K. For a completely loss-free system, we
would expect the resonances in the 55 um holes to have a O
factor of 18.1 [from the lossless model of Fig. 2(a)]. We do
not recover this very narrow resonance mostly due to the 100
GHz frequency resolution of the time domain spectrometer
(determined by 10 ps round-trip time of pulses reflected from
the interfaces of the silicon substrate) which imposes a lower
limit on the measurable mode width of Q=8. In addition,
any structural imperfections or residual losses in the sample
will broaden the mode.

From these low-temperature measurements we can con-
clude that there are two distinct factors determining the sur-
face mode lifetime (and mode-width of the transmission
resonances); one is the intrinsic losses in the materials which
constitute the sample, while the other is a pure-dephasing
effect determined by the size of the holes in the array. In the
complete absence of substrate losses, for a sample with ex-
tremely small hole size, the resonance width will eventually
be limited by the losses in the metal layer, i.e., the surface
plasmon lifetime. At THz frequencies surface plasmon life-
times on metals are in excess of 1 ns, from which one can
infer a lower limit to the resonance width of less than 0.6
GHz. This gives a Q factor for such a resonance of >1000.

V. CONCLUSIONS

In summary, we have measured the enhanced transmis-
sion of THz radiation through a metal film perforated with
arrays of subwavelength holes with various hole sizes. By
measuring in the time domain and comparing our results to a
rigorous modal-matching model, we are able to assess the
relative contributions of resonant and nonresonant transmis-
sions channels. We see that as the hole size is decreased, the
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resonant channel comes to dominate the transmission; it does
so as the lifetime of the surface mode mediating the resonant
transmission increases concomitantly with decreasing hole
size. Conversely the level of nonresonant transmission de-
creases with decreasing hole size.

Using low-temperature measurements, we are able to
separate the surface mode lifetime in to the intrinsic lifetime
(due to pure-dephasing effects determined by the size of the
holes) and the lifetime due to losses in the substrate. We find
that even modest loss levels have profound effects when
measuring transmission through the very smallest holes.
With this knowledge, we can infer a lower limit for the reso-
nance width in an array of extremely small holes on a loss-
less substrate of less than 0.6 GHz, determined by the life-
time of a THz surface plasmon on a metal film—essentially
the limiting case in which the transmission is almost purely
surface-mode mediated. In this limiting case, the Q factor
of the transmission resonance becomes extremely high
(Q>1000), with our model of Fig. 2(a) indicating near-unity
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transmission on resonance. This means that, if losses from
substrates etc. can be eradicated, a hole array resonance ex-
hibiting high Q should be possible. We point out that physi-
cal constraints such as sample size and homogeneity would
probably limit the Q factor and transmission magnitude be-
fore surface mode losses will. However, the high Q factor
suggests that such hole arrays hold promise as the basis for a
very narrowband filter.
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